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Forecasting High Bay Water Levels that Result in Flooding 
and Highway Closure 

EXECUTIVE SUMMARY 

Climate change is changing our world in many ways. A critical challenge for coastal cities is the 
increased risk of flooding events that will accompany sea-level rise. Amongst the largest 
impacts of floods will be disruption of traffic and thus economies and societies as many low-
lying highways have been built across tidal lands. While existing scenario-sketching models 
show the extent of the impact, few short-term forecasts exist and there is very limited real-time 
data to guide operational decisions in the days preceding and during flood events. Motivated by 
flood risks for State Highway 37 across the tide lands along the north shore of San Francisco 
Bay, we have developed an empirical system for site-specific forecast of water levels. 

To build a water-level forecast model we have collated existing data and initiated new 
monitoring sites to track water levels on Novato Creek and Petaluma River. We analyzed these 
data to validate tidal predictions and fine tune them for specific locations on these waterways. 
With reliable tidal predictions, one can identify anomalies when water levels are above tidal 
predictions (i.e., “tidal residuals”). These residuals can explain water level fluctuations of ¾ m 
(30 inches) at sites near the Bay owing to wind, weather, and ocean effects—and over a meter 
at sites more influenced by creek flow. We develop a second model to predict tidal residuals, 
enabling much improved predictions of water level at these sites on Novato Creek and 
Petaluma, which are close to levee low points that threaten future flooding of Highway 37. 
Uncertainty in forecasts for less than 3 days is further improved by an autoregressive approach, 
resulting in 95-percentile errors about 10 cm (4 inches) for near-bay sites and about 27 cm (11 
inches) for the site strongly influenced by creek flow, as precise creek flow predictions are not 
readily available. These water-level forecasts and real-time data are delivered through a 
website that is updated every four hours, including continual update of the prediction model as 
new data are included. Over time, as more data are collected while the system is operated, the 
precision and confidence of forecasted water level will improve at all sites. 

These site-specific observations are also used for long-term forecasts of the increases in the 
probability of flooding as sea level rises. Whereas the highest astronomical tide is rarely 
exceeded now, this same elevation is expected to be exceeded 12 days a year in Petaluma River 
with just ¼ m (10 inches) of sea-level rise, expected by mid-century. At Novato Mouth and 
Rowland Bridge sites, the probability of flooding does not increase much until there is ½ m (20 
inches) of sea-level rise, expected before 2100, but then the risk increases rapidly with 
exceedance expected 10-20 days in a year.



 

 2 

1 Introduction 

The global rise in sea level will have many effects on coastal environments and on the people 
who live there (Chaumillon et al 2017; Griggs et al 2017)—and preliminary impacts are already 
occurring. The most severe and unavoidable impacts are related to the inundation of low-lying 
lands, which occurs as flood events that grow in frequency, severity, and duration as the mean 
sea level rises. Social and economic impacts to low-lying Infrastructure include reversible 
impacts (transient loss of value that ends as flood waters recede) and irreversible impacts 
(permanent loss of value). For example, highways will be impassable for some days or weeks as 
waters drain off the roadway, but they may also be damaged by erosion that needs repair. As 
sea level rises further, these impacts will occur more often with greater disruption and repair 
costs. 

Low-lying coastal highways are susceptible to flooding, which already impacts routes like 
Highway-37 that runs across the lowlands at the northern end of San Francisco Bay and is 
crossed by several creeks/rivers. The road is below normal high-tide water levels for four miles 
near to the Petaluma River (Figure 1; elevations below 6 ft NAVD88). It is protected by levees 
and berms, which also protect several residences and businesses in addition to local and private 
roads. While the increasing frequency of flood events will require alterations to the road, short-
term operational forecasts are required in the meantime to enable planning for traffic 
disruption, evacuation, and protection of property and infrastructure. The reliance on Highway-
37 for regional traffic flows make this a high priority site for decision support tools that can 
provide real-time data and operational forecasts of water level (i.e., flood risk). 

Flood events occur when spring high tides occur at the same time as onshore winds, low 
atmospheric pressure, high fluvial inflows, and/or high ocean water levels—these non-tidal 
forcing factors result in observed water levels that may be a few feet above water levels 
predicted from the tide alone. In different locations these multiple factors combine in different 
ways, requiring a site-specific approach to assess and forecast water level at low points in the 
landscape that separate highways from tidal waters. In this project we seek to develop an 
empirical tool for predicting water level at specific locations that enables flood forecasts on the 
same time horizon as weather forecasts. 

In 2017, Highway-37 in Marin County flooded and was closed for 28 days during 3 separate 
events, primarily associated with Novato Creek and adjoining ditches (section A1, Figure 1). 
Mitigating the immediate impacts and near-term flooding risk cost $8 million, but this did not 
address the long-term risk of highway closure, nor the increasing risk associated with sea level 
rise. One of the flooding incidents was caused by over-topping of a private berm along a 
channel stemming from Novato Creek. The complex arrangement of private and public berms 
and levees protecting lands adjacent to Highway-37 results in a high risk due to the conjunction 
of anomalously high water levels during storms and locally degraded berms/levees. The 
highway and railroad are exposed to this elevated risk, as are local land uses. 

In 2018, the Metropolitan Transportation Commission contracted with Kimley-Horn to 
complete a corridor plan for Highway-37 to prioritize actions that would reduce flooding 
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impacts (Kimley-Horn, 2018). That plan relies on a prior 5-year study carried out by the UC 
Davis Road Ecology Center that highlighted the locations at risk, and strategies highlighted in 
the plan. A flood was anticipated when water levels were 24” above expected, but not when 
water levels were 12” above expected. Kimley-Horn (2018) summarizes road and levee 
elevations (Figure 1), but uncertainty in levee elevations undermines estimates of flood risk. 
This report focuses on forecasting water level, and the probability of anomalously high water 
levels, but quantification of flood risk depends on collection of accurate, fine-scale data on 
levee elevations—specifically at low points in the levee—and on assessment of structural 
integrity of levees. 

In February 2019, Highway-37 flooded again and was closed for 7 days. The highway closed in 
the same place as in 2017 and for the same reason—the failure of local/private berms to 
contain water in Novato Creek. As noted by Kimley-Horn (2018): “Many of the levees are 
privately owned and were not constructed specifically for protecting SR 37 from flooding. 
Instead, protection of SR 37 is an ancillary benefit of the levees. Neither Caltrans, MTC nor any 
of the four North Bay Transportation Authorities has a role in managing or maintaining many of 
the levees responsible for protecting SR 37.”  

 

Figure 1. Elevation of Highway-37 roadway and associated levees (Kimley-Horn 2018).  

https://hwy37.ucdavis.edu/
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In 2019, the UC Davis Road Ecology Center mapped levee elevations along the east bank of the 
Petaluma River in response to local concerns about the long-term condition and elevation of 
the levee. This levee protects an area of land adjacent to Highway-37 which is well below high 
tide levels in the river and would be flooded if the levee failed or if water overtopped the 
levee—likely resulting in another highway closure. Low points in the levee are about 3 ft above 
MHHW, which is about 1.5 ft above the highest astronomical tide level (Figure 2, red circle). 

 

Figure 2. Elevation of levee crest along the east bank of the Petaluma River mapped by UC 
Davis Road Ecology Center in 2019. Elevations measured by RTK-GPS at 10-meter intervals are 
shown relative to Mean Higher-High Water (MHHW = NAVD88 + 6.30 ft). In the red circle, 
crest elevations are about 3 ft above MHHW (about 9.3 ft NAVD88).  

The risk of levee overtopping has increased significantly with sea-level rise (about a foot in 
recent decades) and future risk will increase dramatically with additional sea-level rise (an 
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additional few feet are expected this century: NRC 2012; Griggs et al 2017; OPC 2018). This 
Highway-37 case study illustrates the importance of hyper-local data to address site-specific 
risks. However, this is just one road that is vulnerable to flooding and several other roads are 
also at risk. Not only does each road have knock-on effects on traffic along many other roads, 
but flooding/closure is likely to occur simultaneously at multiple locations and traffic flow may 
be completely stalled in major metropolitan areas like the low-lying metropolis surrounding San 
Francisco Bay. 

Here we develop a site-specific method that can be implemented at multiple vulnerable sites 
around San Francisco Bay and in other low-lying coastal areas across the State of California. This 
method is based on direct observations of water level at the site, independent of large 
computer simulations, and analyses are based on open-source statistical models and publicly 
available software. This empirical method for site-specific (hyper-local) operational forecasts 
complements bay-scale generalized future scenarios generated by regional models like CoSMoS 
(Barnard et al 2014, 2019). Historic data are used to quantify each of the primary controls on 
water level at a specific site (i.e., tides, local winds, atmospheric pressure, river inflow, ocean 
water levels), allowing real-time forecast of water levels, similar to weather forecasts. Data and 
model-based forecasts point to a sharp contrast between sites that are close to one another 
owing to small-scale effects of tide, wind, and creek inflow. By using historical and 
contemporary data at three specific project sites, we forecast water levels out to 4 days in the 
future with errors of 10 cm (0.33 ft) in open tidal waters, which is smaller than the uncertainty 
in topographic low points, and 27 cm (0.89 ft) at sites on the interface of creek and tidal waters, 
where error comes from uncertainty in creek flow predictions. In the report below we outline 
the model developed, the data collected, and the results obtained. Forecasts are available on 
the project website. 

We deployed water level sensors or used existing sensors that telemeter data in real-time and 
developed operational water-level forecasts for three specific locations on Petaluma River and 
Novato Creek (Figure 3). At each site the water level is controlled by a unique combination of 
bay tides, ocean conditions, atmospheric conditions, and land runoff (fluvial controls). 

● Novato Mouth. The station at the mouth of Novato Creek exhibits water levels that are 
primarily controlled by Bay conditions, although low-tide water levels are often above Bay 
water levels due to the ebb tide shoal that has formed off the mouth of the Creek. Water 
level data have been collected here since December 2018 by Marin County.  

● Rowland Bridge. The station near Rowland Bridge is located about 1 mile upstream of the 
station at the mouth of Novato Creek. Data are also available since December 2018 
(collected by Marin County), but the site had been recently vandalized and at the time of 
writing this report and real-time data were not available. Water levels at this site are 
characterized by weaker tidal variability and a strong fluvial effect. As the creek is 
constrained by artificial embankments, the stage is very sensitive to creek flow rate. 

● Petaluma River. The station on Petaluma River is adjacent to Sonoma Horse Park, about a 
mile from the mouth of the river. Water level data have been collected here since October 

https://ourcoastourfuture.org/science-and-modeling/
https://www.usgs.gov/centers/pcmsc/science/coastal-storm-modeling-system-cosmos
https://coastalocean.ucdavis.edu/ocean-observing/hwy37
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2020 by UC Davis Bodega Marine Laboratory. Water levels at this site exhibit strong tidal 
variability without the low-tide control observed at Novato Mouth. Although influenced by 
river flow, the response is weak as the river is surrounded by extensive tidal wetlands.  

 

Figure 3. The study region: magenta stars indicate the location of water-level (WL) monitoring 
stations for which operational water level forecasts have been developed: Rowland Bridge 
and Novato Mouth on Novato Creek; Sonoma Horse Park on Petaluma River. Water level data 
were also collected at sites marked by orange triangles and wave data were collected at the 
site marked by a green square. Data from these secondary sites were used in analyses but not 
available in real-time and not used in water level forecasts at the three primary sites. 

Additional long-term water level data are available elsewhere in San Francisco Bay (e.g., NOAA 
tide stations, like Richmond and additional short-term water level data were collected on 
Petaluma River and Novato Creek by UC Davis Bodega Marine Laboratory during this study (but 
not available in real-time). These additional sites in Petaluma River and Novato Creek provided 
additional data for analysis and development of forecast methodology, but they are not used in 
the final model and not addressed further in this report.  

As described below, the highest water levels occur when storm conditions occur at the same 
time as spring high tides. While the influence of spring tides on water level varies little across 
the seasons, the influence of local winds, atmospheric pressure, river inflow, and ocean water 
levels is more important in winter, accounting for significant positive anomalies in water level 
(i.e., observed water levels are much higher than tidal predictions). Thus, the greatest risk of 
flooding is in winter, associated with winter storms but only weakly associated with rainfall and 
runoff. As the 2020-2022 project period was characterized by weak winter storms, our data set 

https://tidesandcurrents.noaa.gov/stationhome.html?id=9414863
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is limited, and our model should improve in precision and confidence as more storm data 
become available in future years.   
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2 Methodology 

2.1 Stakeholder Engagement 

We leveraged prior relationships with landowners in the vicinity of Novato Creek and Petaluma 
River to gain access to the levee on the Petaluma River (i.e., Sonoma Horse Park) and to engage 
the landowners in discussions of the purpose and likely outputs of the project. We maintained 
this stakeholder engagement as much as possible during COVID, meeting with landowners at 
the Petaluma River site and remotely (via Zoom) during 2020 and early 2021. At the same time, 
we leveraged existing relationships with the Transportation Authority of Marin, Marin County 
Public Works, Sonoma County, and other local agencies to inform them of the study. Several 
stakeholders requested a workshop following completion of the model and submission of the 
final report. 

2.2 Model Rationale and Overview 

Flood prediction is fundamentally complex because of the compounding interaction of multiple 
effects that can account for higher or lower water level. Traditional physically based numerical 
simulation models resolve key processes and exhibit great predictive capability when the 
dominant processes are included—and when there is an extensive data set that can be used for 
both model calibration and validation. However, high-resolution simulation models are 
computationally expensive which limits their performance and availability for short-term and 
localized forecasting. Data-driven approaches have long been used for river flood prediction 
(Mosavi et al, 2018) and tidal predictions (Hibbert et al 2015), but they are less commonly used 
in predicting coastal flooding. The advantage of an empirical modeling (statistical model based 
on direct observations) over simulation modeling is that it does not need to make a priori 
decisions about which processes to include, it is less computational and can output predictions 
quickly and affordably for specific sites. While existing numerical simulation models quantify 
San Francisco Bay water levels for generic scenarios, existing site-specific operational forecasts 
only account for tidal fluctuations in water level and omit meteorological and fluvial effects 
which are a key factor in coastal flooding. The primary objective of this project was to develop 
and assess the skill of a data-driven approach for operational forecasting of water levels in 
sheltered bay and estuarine waters (an operational model for forecasting flood risk would 
require more precise and reliable data on levee elevations). The ultimate aim is to implement a 
flood forecast model that is easy to implement, with low computational cost and fast training 
and testing.  

Statistical approaches can be divided into correlative models and machine-learning models. 
Both approaches aim to fit the best mathematical model to a set of data. While machine 
learning algorithms are specifically constructed for the best predictive accuracy, they are 
somewhat obscure and lack interpretability. Statistical models on the other hand are often 
easier to interpret and relationships between the variables can be easily visualized and 
interpreted in terms of well-established physical processes. In this project we combined a 
relatively simple statistical model (multiple-linear regression) with a forecast error correction 
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inspired by the autoregressive moving average method (ARMA) commonly used in time-series 
forecasting (Hibbert et al 2015).  

In tidal waters like the San Francisco Bay, tidal fluctuations dominate the water level signal 
(AECOM 2016), accounting for the majority of variance. Tidal analysis is well established, and 
tidal predictions are available for many locations in San Francisco Bay and globally. While tides 
are large and well predicted, non-tidal influences on water level are typically small and poorly 
predicted at specific sites. However, non-tidal signals can be large during weather-related 
events, accounting for water levels well above expected tidal levels and consequent flooding 
events—these events are referred to as “extreme tides” in AECOM (2016), which is an unusual 
and misleading term as the events are due to a combination of tidal and non-tidal effects. The 
difference between the observed water level (“stage”) and the predicted tide is known as the 
“tidal residual” (or sometimes the tidal anomaly or tidal deviation). The challenge is to predict 
this non-tidal residual, which is a response to forcing by onshore wind stress, low atmospheric 
pressure, high river inflow, and/or fluctuations in coastal sea levels (related to large-scale wind 
and runoff as well as seasonal effects, El Niño cycles and sea-level rise). Our model uses a 
record of past water level fluctuations at a specific site to predict future water levels with a 
forecast horizon limited by reliable weather predictions (i.e., similar to weather forecasts). It is 
comprised of three steps: (i) develop a tidal prediction model for the observation site, (ii) 
calculate tidal residual and develop a model that predicts this residual as a response to 
meteorological and hydrological conditions, and (iii) use an autoregressive model to account for 
slowly varying background effects. The third step assumes that the difference between today’s 
observed values and the tide-and-weather-based prediction is primarily due to large-scale, 
slowly varying effects such as seasonal or interannual fluctuations in coastal ocean sea level and 
seasonal fluctuations in the inflow of aggregated land runoff to the Bay. This error-reduction 
approach is commonly used in time-series forecasting (Hibbert et al 2015) and is effective in 
reducing short-term forecast error, as it does in our model. 

The workflow for this forecast model is summarized in Figure 4. Once sufficient data are 
available for a given location, one can use this water level record to calculate the predicted tide. 
Then one can calculate the tidal residual from the difference between observed and predicted 
water level and regress this time-varying residual against parallel data on creek flows, local 
winds, atmospheric pressure, and ocean sea level. By combining the tidal prediction model and 
the model that relates the tidal residual to meteorological and hydrological forcing, one can 
make hindcasts of water level and compare those to past observations to estimate the 
uncertainty in model prediction (model error). Given the slowly varying nature of the error, one 
can make an autoregressive correction to the hindcast and again compare to past observations 
to quantify corrected error. Finally, one can calculate how corrected error increases with the 
forecast horizon (i.e., days into the future). 

Once the model is fully trained and error bounds are quantified, it can be implemented as an 
operational tool for forecasting water level at the observation site. The quality of forecasts for a 
specific location depends on high-quality meteorological and hydrological forecasts (which are 
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typically available for only a few days into the future) and real-time water level observations (to 
allow for autoregressive corrections).  

 

Figure 4. Schematic summary of workflow for developing and implementing a water-level 
forecast model from water level observations. 

2.3 Tidal Analysis and Extracting Tidal Residual Signal 

The tide accounts for the largest contribution to the variance in the water level signal. The first 
step is to remove the tide and calculate the residual. The tide signal is composed of a number of 
predetermined harmonics of different phase and amplitude. Harmonic analysis allows one to 
determine the unique phase and amplitude for each tidal constituent at a specific location. The 
tidal signal can then be predicted as a sum of harmonic signals. Several prepackaged routines 
are available to determine coefficients for each tidal constituent. In this project, we use a 
publicly available Python routine based on a well-documented Matlab routine called Utide 
(http://www.po.gso.uri.edu/~codiga/utide/utide.htm). Utide was selected as it provided the 
best results for tidal prediction in shallow waters like in Novato Creek.  

To optimize determination of the tidal signal, we removed the strongest non-tidal influences 
from the data record before applying the Utide analysis to determine the persistent tidal signal. 
For example, on inspection of water level data at Novato Mouth, it is evident that the lowest 
water levels are frictionally controlled by an ebb-tide deltaic shoal off the mouth of the creek, 
so that the inclusion of these data contort the harmonic analysis, which is not well-suited to 

http://www.po.gso.uri.edu/~codiga/utide/utide.htm
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friction-dominated drainage flows. For water levels below 0.6 m NAVD88, the tidal drop in 
water level slows down as the water level asymptotes towards the elevation of the crest of the 
shoal. We thus exclude this non-tidal effect from the analysis by only including data for water 
levels above 0.75 m NAVD88 (i.e., only considering the well-behaved tidal curve at mid/high 
tide). This approach focused the analysis on performing best for high tides, which is when 
flooding events occur. We also removed data collected during times of significant creek flow to 
exclude fluvial effects contaminating tidal analysis (data only included from periods when creek 
flow less than 25 cfs). This fluvial effect was most important to exclude in analysis of water 
levels from the Rowland Bridge site, where fluvial effects dominate tides during flow events 
(Figure 5). At Rowland Bridge and Petaluma River sites, the tidal signal did not show low-tide 
friction effects as at Novato Mouth, which meant that low-tide data were not excluded, and the 
tidal predictions performs well at both high and low tides. 

 

Figure 5. Flow in Novato Creek and water level at Rowland Bridge from January 2019 to 
March 2022. During spring-summer-fall months with negligible flow in the creek, water levels 
exhibit a tidal signal, but during flow events water levels have little relation to tide as they 
are controlled by river flow. 

We adopted different approaches for obtaining a residual signal at different sites. At Novato 
Mouth the residuals calculated at low tide often exhibit large error, given that the tidal analysis 
excluded low-tide data. To exclude this effect, we only calculated residuals at high tide (i.e., 
about twice a day, Figure 6), which is the time when the tidal prediction is most accurate. The 
12-hour time series was then smoothed with a 3-point window. At Petaluma River and Rowland 
Bridge sites, the residual was extracted from the entire signal (all tidal stages) and smoothed 
with a 3-hour window. This 3-hour smoothing removes any irregularities from the noise in the 
observations and removes the effect of a small lag that is sometimes evident during rapidly 



 

 12 

rising and falling tides. Longer windows reduce the variance in the residual signal and shorter 
windows exhibit a tidal signal in the residual (owing to the small lag during rising and falling 
tides). 

 

Figure 6. Observed and Utide-predicted water levels for Novato Mouth during November and 
December 2019, with red symbols marking the 12-hour residual values and black line showing 
the 3-point smoothed tidal residual signal. 

2.4 Factors Controlling Tidal Residual 

Deviations of observed water level from tidal predictions are primarily due to meteorological 
and hydrological effects. The foremost factors are onshore wind stress that tilts the bay surface 
and piles up water at the observation site, atmospheric pressure that depresses water level at 
the site, land runoff that accounts for water level gradients in confined channels, and water 
levels in the coastal ocean that set the base level for the bay. While cumulative inflow to the 
Bay also can affect Bay water levels, this effect was weaker than others, difficult to predict, and 
slowly varying so that it was addressed more effectively through the autoregressive error 
correction. Likewise, most ocean influences were weak, difficult to predict, and slowly varying 
(i.e., best handled by the autoregressive error correction). However, local wind forcing accounts 
for significant short-term storm surge in the Gulf of Farallones, which correlates well with winds 
over the ocean and is an important factor in explaining tidal residuals in the Bay (this effect is 
not slowly varying and colloquially referred to as the “wind tide”). 

The data used to develop the model are listed in Table 1 (i.e., training data) and plotted in 
Figure 7. For each station, the residual signal was related to four primary factors: 

● Local wind – onshore component of wind measured at Gnoss Field or Napa Airport. 
● Local atmospheric pressure – measured at Gnoss Field or Napa Airport. 
● Local runoff – creek flow measured on Novato Creek or Napa River. 
● Coastal ocean water level – tidal residual from NOAA tide gauge at Point Reyes that is 

well correlated with onshore wind at NDBC Buoy 46026 in the Gulf of Farallones.  
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While the model was initially trained with the data from sites closest to the water-level 
observation site (Figure 6), it was later retrained with data that are predicted by meteorological 
and hydrological models (Figure 9), thus allowing water level forecasts. Firstly, the model was 
retrained for each site using Napa River flow as it is predicted and well correlated with 
variability in flows in Novato Creek and Petaluma River (Figure 7). Secondly, coastal ocean 
residuals at Point Reyes and San Francisco tide gauges were well correlated with onshore winds 
in the Gulf of Farallones, which are predicted in weather forecasts. Local winds and 
atmospheric pressure are also predicted. 

Table 1. Data Sources for Factors that Influence Water Level 

Location Type Data Sources 

Novato Creek  Flow USGS NWIS 
https://waterdata.usgs.gov/nwis/uv?site_no=11459500 

Napa River Flow USGS NWIS 
https://waterdata.usgs.gov/ca/nwis/uv?site_no=114580
00 

Chip Island Delta Outflow DWR CDEC 
https://cdec.water.ca.gov/dynamicapp/staMeta?station_
id=DTO 

Point Reyes WL residuals NOAA tide gauge  
https://tidesandcurrents.noaa.gov/noaatidepredictions.h
tml?id=9415020 

Buoy 46026 Atmospheric 
pressure, Wind, 
SST 

NOAA NDBC 
https://www.ndbc.noaa.gov/station_page.php?station=4
6026 

Napa Airport Atmospheric 
pressure, Wind, 
precipitation 

NOAA NCEI 
https://www.ncei.noaa.gov/maps/lcd/ 
 

Gnoss Field Atmospheric 
pressure, Wind, 
precipitation 

Sonoma county  
https://sonoma.onerain.com/site/?site_id=155&site=b4e
33d63-e909-4ecd-bb2b-1ee2c587bb00 

Table 2. Data Sources for Water Level  

Location Type Data Sources 

Mouth of Novato 
Creek 

Stage https://marin.onerain.com/site/?site_id=16808&site=a88e57c
5-06b1-4855-a65c-92ef0063e6bb 

Novato Creek at 
Rowland Bridge 

Stage https://marin.onerain.com/site/?site_id=16809&site=82b05c
a8-3c86-49cc-9660-63ca3abd3e35 

Petaluma River at 
Horse Ranch 

Stage https://coastalocean.ucdavis.edu/ocean-observing/hwy37 

https://waterdata.usgs.gov/nwis/uv?site_no=11459500
https://waterdata.usgs.gov/ca/nwis/uv?site_no=11458000
https://waterdata.usgs.gov/ca/nwis/uv?site_no=11458000
https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=DTO
https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=DTO
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9415020
https://tidesandcurrents.noaa.gov/noaatidepredictions.html?id=9415020
https://www.ndbc.noaa.gov/station_page.php?station=46026
https://www.ndbc.noaa.gov/station_page.php?station=46026
https://www.ncei.noaa.gov/maps/lcd/
https://sonoma.onerain.com/site/?site_id=155&site=b4e33d63-e909-4ecd-bb2b-1ee2c587bb00
https://sonoma.onerain.com/site/?site_id=155&site=b4e33d63-e909-4ecd-bb2b-1ee2c587bb00
https://marin.onerain.com/site/?site_id=16808&site=a88e57c5-06b1-4855-a65c-92ef0063e6bb
https://marin.onerain.com/site/?site_id=16808&site=a88e57c5-06b1-4855-a65c-92ef0063e6bb
https://marin.onerain.com/site/?site_id=16809&site=82b05ca8-3c86-49cc-9660-63ca3abd3e35
https://marin.onerain.com/site/?site_id=16809&site=82b05ca8-3c86-49cc-9660-63ca3abd3e35
https://coastalocean.ucdavis.edu/ocean-observing/hwy37
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Figure 7. Time series of data used in analyses (January 2019 to December 2021). 

While initial analyses of water level at the mouth of Novato Creek conducted in 2021 were 
based on a 2-year record of observations starting in January 2019, the final model is based on 
more than 3 years of data from 2019 to 2022. Prior to analyses, all data were processed to be 
regularly spaced with outliers removed and gaps filled. For wind, the “onshore component” was 
found by iteratively correlating different components to the residual signal to identify the 
orientation of the component that has the most influence on the residual.  

Table 3 lists the correlation coefficient r2 for single-factor correlations with the residual signal at 
Novato Mouth. Correlations between the residual at Novato Mouth and different factors can 
also be visualized in scatter plots (Figure 8).  
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Figure 8. Association between tidal residual at Novato Mouth Novato_residual with (i) tidal 
residual at Point Reyes PReyes_residual, (ii) Delta outflow delta_outflow, (iii) Novato Creek 
flow creek_flow, (iv) atmospheric pressure AtmPres, and (v) onshore wind onshorewind. 
Panels along the diagonal show the distribution of values for each parameter and off-
diagonal panels show scatter plots of relationships between pairs of parameters. 

The strongest association and most linear relation are between residuals at Point Reyes and 
Novato Mouth (i.e., the ocean effect) as Bay water level rises in concert with ocean water level. 
There is also a significant (negative) linear relationship between Novato Mouth residual and 
atmospheric pressure as bay hydrodynamics is controlled by sub-surface pressure such that 
water level rises to increase sub-surface pressure due to water head to compensate for any 
drop in atmospheric pressure (i.e., a simple barometer effect). A clear but weaker relationship 
between Novato Mouth residual and onshore wind is observed due to onshore wind stress 
piling up Bay waters along the shore (i.e., wind setup). For creek flow, the relationship is highly 
nonlinear with little response to weak flows and strong response to occasional high flows, due 
to the frictional effects on fluvial flows. At other sites the relationships are qualitatively similar, 
although the dependence of the residual on creek flow is much stronger at Rowland Bridge. 
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Table 3. Correlation coefficient (r2) quantifying relationship between tidal residual at the 
mouth of Novato Creek and various datasets 

Datasets Correlation to Residual at Mouth of 
Novato, m  

Residual at Point Reyes, m  0.85 

Delta Outflow, CFS 0.28 

Novato Creek flow, CFS 0.39 

Napa Airport Precipitation, in 0.29 

Atmospheric Pressure, mBar -0.57 

Sea Surface Temperature (SST), C 0.23 

Ocean, Onshore Wind, m/s 0.53 

Gnoss Field, Onshore Wind, m/s 0.24 

Napa River Flow, CFS 0.35 

Napa River Stage, ft 0.45 

Two criteria were used in selection of training data for the final model development:  
(i) how well the residual is correlated with this parameter, and (ii) how well the parameter is 
reliably predicted out to 3-5 days in the future. Based on these criteria, four parameters were 
selected for the model (Figure 9):  

● Flow in Napa River 
● Atmospheric pressure at the mouth of the Bay 
● SSW onshore wind stress over the ocean in the Gulf of Farallones  
● SE local onshore wind stress at Gnoss Field  

The strongest predictors are atmospheric pressure and wind over the ocean, with a weaker 
dependence on river flow and local onshore wind. However, these four factors are themselves 
correlated, specifically during rain-bearing, low-pressure storms in winter. Thus, while the 
model works well, the attribution of variance in residual signal to specific factors may not be 
precise. The SSW onshore wind over the ocean also may be a proxy for other influences on 
water level, including water temperature, Ekman upwelling, and geostrophic setup related to 
alongshore currents (which are correlated with wind strength and orientation). This is question 
of attribution and the relative phasing of non-tidal forcing will be addressed in future work. 
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Figure 9. Data used in final model training, based on over 3 years of data from January 2019 
to September 2022: (i) Atmospheric pressure Baro_pressure, (ii) Onshore wind over Gulf of 
Farallones Ocean_wind, (iii) Onshore wind at mouth of the creek Local_wind, and (iv) land 
runoff as indexed by Napa River flow napa_flow_cfs. 

2.5 Selecting and Training the Tidal Residual Model 

The predictive model for the tidal residual, combined with the predictive model for tides, is the 
engine of the forecasting method. Tidal-residual model selection and training used the scikit 
learn python package and a different model was built for each location using the same training 
data set (described above). The target variable was the residual at a selected location. Amongst 
the many different model types, we selected a model that was simple and easy to replicate 
across these three sites (and potentially more sites in the future). We selected a Multiple Linear 
Regression (MLR) model, to which we applied a few modifications: 

● Min-Max scaling 
● Polynomial transformation 
● Correction for estimated error 

Before fitting the model, the input data were normalized with a Min-Max scaler which 
transforms all factors so that data values lay between 0 and 1. This normalization ensures that 
the calculated weights are all within the same range. Initially we used a linear model where the 
target value y is expected to be a linear combination of the factor values xi with coefficients wi 
and intercept w0. In the case of only 2 factors, the equation is: 

ŷ(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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The model solved for wi and w0 by minimizing the residual sum of squares between the 
observed targets in the dataset, and the targets predicted by the linear approximation—i.e., 
finding the model that minimizes the mean squared error. In Figure 10 the model prediction is 
shown for the tidal residual at Novato Mouth using this scaled MLR approach for a 4-month 
period in early 2019 that included several large storms. 

 

Figure 10. Observed and predicted residuals at Novato Mouth with predictions using a linear 
regression model. 

Similar MLR models were applied to Rowland Bridge and Petaluma River. The corresponding 
weights for each of the three target stations are listed in Table 4.  

Table 4. Coefficients (w) of the Multiple Linear Regression for each site 

 Mouth Novato Petaluma River Rowland Bridge 

Barometric Pressure -0.303 -0.146 -0.346 

Ocean Wind 0.214 0.178 0.339 

Local Wind 0.084 0.151 0.137 

Napa River Flow 0.441 0.654 4.498 

While the MLR model captures much of the variance and resolves high-residual events, there is 
a tendency to overestimate the residual when there is high creek flow (Figure 10; e.g., late 
February). This is because the residual does not have a linear relationship with flow, as seen in 
scatter plots above (Figure 8). We thus used a polynomial model that includes linear and 
quadratic terms for each factor. In the case of only 2 factors, the equation is: 

ŷ(𝑤, 𝑥) = 𝑤0 +𝑤1𝑥1 + 𝑤2𝑥2 +𝑤3𝑥1𝑥2 +𝑤4𝑥1
2 +𝑤5𝑥2

2 
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So, in this example, the model solves for 5 weights while still using the ordinary-least-square 
method: 

𝑧 = [𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥1
2, 𝑥2

2] 

Ultimately, we used a 3rd degree polynomial with 4 input factors, which resulted in a solution 
with 34 weights. Sensitivity analysis was performed on the order of the polynomial, and we 
found that a 3rd degree polynomial gives the best fit to the data while avoiding overfitting 
(model fits training data well but yields poor predictions). In Figure 11 we show the fit of the 
model (scaled MLR) on the same data using the 3rd degree polynomial relation. The model now 
resolves the high-flow events much better. 

 

Figure 11. Observed and predicted residuals at Novato Mouth with predictions using a 3rd 
degree polynomial model.  



 

 20 

2.6 Model Forecasts 

Once the model is trained, it can be used to forecast water level by inputting predicted values 
of the four primary factors. Predicted values for input factors were obtained from data sources 
listed in Table 5. 

Table 5. Input Data Sources 

Location Type Data Sources 

NOAA Buoy 
46026  

Atmospheric 
Pressure (regional) 

https://openweathermap.org/ API 

NOAA Buoy 
46026  

Offshore Wind 
(ocean setup) 

NOAA National Weather Service API 
https://www.weather.gov/documentation/services-web-api 

Gnoss Field Local Wind  
(bay setup) 

NOAA National Weather Service API 
https://www.weather.gov/documentation/services-web-api 

Napa River Land runoff  
(flow rate)  

NOAA advanced hydrologic prediction service  
water.weather.gov/ahps2/hydrograph.php?gage=apcc1&wfo=mtr 

The final step in developing a forecast is to correct for the error due to long-term, large-scale 
influences that are not well resolved by the regression approach. This correction was made 
using the assumption that the model error tomorrow will be the same as it is today. This is 
reasonable when the error is slowly varying (Figure 12: see that 12-hour error only occasionally 
deviates significantly from 7-day error). Here we used the average error over the last 12 hours 
to correct predictions for tomorrow as well as for days beyond that (the entire forecast period).  

 

Figure 12. Time-series of the error calculated from observed minus predicted value. Black is 
the mean error of the previous 12 hours, and red is the mean error of the previous 7 days.  

https://openweathermap.org/
https://www.weather.gov/documentation/services-web-api
https://www.weather.gov/documentation/services-web-api
https://water.weather.gov/ahps2/hydrograph.php?gage=apcc1&wfo=mtr
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The predicted residual using autoregressive error correction (Figure 13) is significantly 
improved with respect to prior predictions without error correction (Figure 11). While this 
correction is very effective in reducing short-term forecast error through accounting for slowly 
varying effects (weekly to seasonal), it is not useful for long-term forecasts which will need to 
include additional terms to account for these slowly varying effects (e.g., ocean currents).  

 

Figure 13. Observed and predicted residuals at Novato Mouth with predictions using a 3rd 
degree polynomial and including autoregressive error correction. 

This autoregressive error correction uses the error from the previous day, which becomes less 
effective as one predicts forward more days. In predicting water level (tide plus residual) the 
final error thus increases as one predicts further into the future, with the autoregressive error 
correction showing no benefit for predictions 3 days or more in the future (Figure 14). 
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Figure 14. The Novato Mouth water level prediction exhibits a 95-percentile error of 12.4 cm 
without error correction, but error correction reduces error to less than 10 cm for predictions 
within a day and shows improved forecasts up to 3 days for this site.   
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3 Results 

3.1 Model Predictions 

We used the statistical model outlined above to produce 4-day forecasts of tidal residuals and 
combined that with tidal predictions to forecast water level at the three project sites: Novato 
Mouth, Rowland Bridge, and Petaluma River. The workflow illustrated in Figure 4 is executed 
automatically every 4 hours and the result is displayed on the web platform (as shown in Figure 
14) https://coastalocean.ucdavis.edu/ocean-observing/hwy37. The entire model is retrained 
every 4 hours using all the data available up until that point, learning more every day.  

 

Figure 15. Observed water levels (blue line left of green bar) and predicted water levels 
(dashed line right of green bar) at Petaluma River site. For days in the past, the 1-day forecast 
value is also plotted as an illustration of model performance. For days in the future, the 95-
percentile error is shaded gray. Horizontal dashed lines represent flood thresholds (Table 6) 
and the blue arrow represents the elevation of a low point in the levee close to this site 
(about 2.83 m NAVD88, Figure 2). 

Table 6. Reference Water Levels (NAVD88) 

 Novato Mouth Petaluma River Rowland Bridge 

Highest recorded water 
level 

2.42 m 2.54 m  4.13 m 

Date of highest recorded 
level 

2/14/2019 1/03/2022 2/14/2019 

FEMA 100-Flood 2.99 m 2.99 m N/A 

Lowest point in the levee N/A 2.83 m N/A 

Estimated Flood Stage N/A N/A 4.33 m  

An illustration of web-page graphics for Novato Mouth is shown in Figure 16 and for Rowland 
Bridge in Figure 17. In each plot, the left side represents the past, showing both model 

https://coastalocean.ucdavis.edu/ocean-observing/hwy37
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predictions (with one-day error correction) and observations. The right side represents the 
future, showing predicted water levels for the next four days together with a band of 
uncertainty representing the 95-percentile error, which increases each day into the future. The 
left-side hindcast gives an idea of the model performance when meteorological and 
hydrological conditions are known, with peaks generally well estimated and larger errors 
generally at lower water levels or due to offset in timing of the tidal curve (this occurs because 
of interactions between residual water level and tidal propagation that is not included in this 
model which assumes linear superposition of tidal and non-tidal effects). The 95-percentile 
error estimate for water level predictions assumes perfect input data, thus it does not account 
for uncertainty in the predicted values for wind, flow, and pressure input data. This uncertainty 
is typically small for meteorological and hydrological forecasts over time horizons of 4 days or 
less, but it could be quantified in future collaborative work linking with meteorological and 
hydrological forecast models. 

High-water thresholds are represented on each plot and listed in Table 6: 

● For the Novato Mouth and Petaluma River sites, the red dashed line represents the 
elevation of the 100-year flood as listed in the new FEMA flood map as calculated by 
AECOM (2016). 

● For the Rowland Bridge site, the red dashed line represents the flood stage, based on 
information from the USGS gauge upstream of this site. 

● The gray dashed line is the highest level recorded to data at each station. This is a 2-year 
record at the new Petaluma River site that started in October 2020 and almost 5 years 
at Novato Mouth and Rowland Bridge (long enough to include high water extremes and 
highway flooding in early 2019). 

● For the Petaluma River site, we surveyed the elevation of the levee crest (Figure 2) and 
the low point in this levee is represented by a blue arrow in Figure 15. 

The web-based graphic for the Novato Mouth site does not show predictions for water levels 
below 0.75 m because we did not generate these predictions. The low-water portion of the 
tidal signal is highly influenced by frictional effects of a shoal offshore of the creek mouth (as 
discussed above and as evident in observed water levels that are plotted). The tidal analysis did 
not include these low-water values and predictions would not be well founded. Thus, given the 
interest in high-water values, the analysis, model, and predictions are only available for water 
levels above 0.75 m NAVD88 (Figure 16).  
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Figure 16. Observed water levels (blue line left of green bar) and predicted water levels 
(dashed line right of green bar) at Novato Mouth site. For days in the past, the 1-day forecast 
value is also plotted as an illustration of model performance. For days in the future, the 95-
percentile error is shaded gray. Horizontal dashed lines represent flood thresholds (Table 6). 

 

Figure 17. Predicted water levels (dashed line right of green bar) at Rowland Bridge site. For 
days in the past, the 1-day forecast value is plotted, and for days in the future, the 95-
percentile error is shaded gray. At the time of writing the report, no real-time data were 
available. This contributes to the larger error in forecast data evident at this site. Horizontal 
dashed lines represent flood thresholds (Table 6). 

At the time of writing this report the water-level sensor at the Rowland Bridge was out of 
service, resulting in the absence of observed values (blue line) in Figure 17. As the model is 
based on analysis of historical data, it can continue to produce useful predictions. However, in 
the absence of real-time data, the autoregressive error correction cannot be made and thus the 
95-percentile error bar is larger—and will remain so until the real-time sensor comes back 
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online. This section of the creek has levees on both sides and is disconnected from surrounding 
lands, hence there is no published 100-year flood level. In place of the FEMA level, the flood 
stage level was estimated from a USGS gauge located on the Creek about a mile upstream of 
Rowland Bridge (USGS 11459500). 

3.2 Model Performance 

The performance of the model was evaluated by comparing predicted water levels with 
observed water levels using historical data. Differences between observed and predicted values 
can be due to errors in the tidal prediction model, errors in the residual prediction model, 
errors related to the linear combination of models, or errors in the predicted factors that drive 
the residual model. Where errors are due to slowly varying effects (like seasonal fluctuations), 
the autoregressive error correction reduces error over multi-day forecast times, but where 
errors are due to higher frequency factors the autoregressive correction deteriorates over the 
time scale of these factors (i.e., over days). The error correction applied is the mean error of the 
previous 12 hours. 

We assess the performance of the tidal residual prediction model developed in this project 
(Table 7) as well as the performance of the water-level prediction model (Table 8) that 
combines the residual prediction with tidal prediction and thus includes additional error related 
to the tidal model and the way in which the two predictions are combined. 

Table 7. Performance of model predicting tidal residual with error correction (12-hour 
forecast). 

Metric (meters) Novato Mouth Rowland Bridge Petaluma River 

Mean Average Error 0.0122 0.0340 0.0155 

Mean Squared Error 0.0030 0.0033 0.0004 

Root Mean Squared Error 0.0167 0.0575 0.0206 

R2 0.9583 0.9639 0.9439 

Maximum Error 0.1864 0.7942 0.1764 

99 Percentile Error 0.0516 0.2481 0.0607 

95 Percentile Error 0.0324 0.0983 0.0405 



 

 27 

Table 8. Performance of model predicting water level with error correction (12-hour 
forecast).  

Metrics (meters) Novato Mouth Rowland Bridge Petaluma River 

Mean Average Error 0.0344 0.0967 0.0420 

Mean Squared Error 0.0021 0.0201 0.0030 

Root Mean Squared Error 0.0462 0.1416 0.0544 

R2 0.9730 0.8953 0.9915 

Maximum Error 0.4355 1.1760 0.3284 

99 Percentile Error 0.1422 0.5214 0.1563 

95 Percentile Error 0.0936 0.2718 0.1091 

Typical errors are small for the Novato Mouth and Petaluma sites, which are controlled 
primarily by Bay hydrodynamics (RMS error about 5 cm for water level predictions and about 2 
cm for predictions of residual). However, errors are larger at Rowland Bridge, which at times is 
dominated by fluvial forcing that accounts for very large anomalies in water level (RMS error for 
water level is 14 cm and 6 cm for the residual). The differences in model performance are 
evident in scatter plots of predicted daily maximum water level versus observed daily maximum 
water level (Figure 18). Rowland Bridge scatter is notably greater for higher water levels that 
occur during rare high-flow events. Over time, as more high-flow events are captured in the 
water-level data, the model can be expected to improve for these fluvially dominated events 
and the scatter will narrow (i.e., RMS error will be reduced).  

 

Figure 18. Scatter plot of model-predicted daily maximum water level versus observed daily 
maximum water level at each of the three sites. 

The model generated from just 2 years of data performs well at sites primarily influenced by 
Bay and ocean factors, with RMS errors less than the error in land surface elevations. Our 
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interest is in predictions of water level maxima, which is plotted in Figure 18, illustrating that 
predictions correlate well with observed water levels. This performance is also indexed by 
quantifying 99-percentile or 95-percentile errors (Table 8) for the bay-dominated sites, 99% of 
predictions are within about 15 cm of the observed value, and 95% are within about 10 cm—
uncertainties comparable with or less than the uncertainty in the elevation of levee crests. 
Further, it is expected that these errors will be reduced as more years of observed water level 
become available (including more storm events) and as the error in model predictions of wind, 
atmospheric pressure and river flow are reduced. We obtain meteorological forecasts from 
NOAA for 3 hours to 4 days in the future, but uncertainties in those forecasts are not shared nor 
readily available. 

In statistical modeling, it is common practice to evaluate the accuracy of the model using an 
independent set of data that were not used in model training. However, our data record is 
short and specifically lacks storm events. Clearly the model performs well for periods between 
storms, but without more data we cannot at this time assess the efficacy of the model in 
representing the largest future storms. Specifically at the Rowland Bridge site, fluvial effects 
dominate during runoff events and flood risk may be better represented by traditional river-
flood models which already exist for Novato Creek. 

To represent uncertainty in forecasted water level in the web-based graphics we have used the 
95-percentile error, which increases with increasing time between the time when the model 
error is estimated and the time for which the forecast is given. For example, a forecast made 3 
days ahead will be using the same error correction (the average error of the last 12 hours of 
observations) as one made one day ahead. However, that correction is less effective as 
illustrated in Figure 14. To quantify this loss of effectiveness over time, the 95-percentile error 
was calculated for different forecast horizons (1 day, 2 days, 3 days, and 4 days) and included in 
web-based graphics (Figure 15, Figure 16, and Figure 17). 

3.3 Importance of Individual Forcing Factors 

The four primary factors (local wind, ocean wind, river flow, atmospheric pressure) exhibit 
different influences on the tidal residual and thus on the water level. These relationships are 
quantified in the model predicting the residual at each site. Here we explore the relationship 
between an individual forcing parameter and the response in the residual by altering that 
parameter value while holding the other parameters constant. The range of values for each of 
the model parameters is summarized in Table 9 and the forcing-response curves are shown in 
Figure 19.  
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Table 9. Range of values for each of the model parameters. 

Metric Pressure 
mBar 

Ocean SSW wind 
m/s 

Local SE wind 
m/s 

Napa flow 
cfs 

Count 32,256 32,256 32,256 32,256 

Mean 1017.4 -1.3 -0.6 120.1 

Standard Deviation 4.7 3.3 1.9 656.4 

Minimum value 996.2 -11.7 -7.7 0.0 

25% 1014.3 -3.5 -1.8 0.0 

50% 1017.0 -1.7 -0.4 4.7 

75% 1020.4 0.7 0.8 32.5 

Maximum value 1035.4 13.5 7.8 16,600.0 

In the hypothetical scenario where only one factor is forcing the water level residual, one could 
estimate the relationship from physical principles. However, there are multiple factors varying 
in parallel and the statistical model only approximates a physical model because the aim of the 
statistical model is to account for as much of the variance in the observed water level residual 
as possible. At all sites the response of the water level residual to atmospheric pressure is close 
to the theoretical expectation that water level will drop 10 cm for each 10-mBar increase in 
atmospheric pressure. Likewise, one expects a similar relationship between ocean wind and 
water level residual at all sites as the effect of ocean wind is to raise the water level in the 
coastal ocean, which is common for all sites. While this response is similar, about 10 cm 
increase in water level for 10 m/s onshore wind, the quadratic response at Rowland Bridge is 
physically more realistic as wind forcing scales with a power between 2 and 3. Local wind 
exhibits similar relationships. The most complex response in water level residual is related to 
land runoff indexed by Napa River flow, which is not simply explained by an open-channel 
discharge curve. For the Novato Creek and Petaluma River sites increasing river flow explains an 
increase in water level residual up to a limit (3000 cfs at Novato Mouth; 1500 cfs at Petaluma 
River); however, for larger flow values this relationship changes and greater flows are 
associated with decreased water level residuals. While this relationship is based on limited flow 
events (Napa River flows only reach these higher values several times in the model training 
period), the fact that this statistical model doesn't match physical expectations does not 
invalidate it as many of the forcing factors are co-varying. During high flow events or 
immediately preceding it, it is common to also see strong onshore winds locally and over the 
ocean, as well as low atmospheric pressure (Figure 20)—in other words, all four factors 
contribute to high values of the water level residual. In addition, there are other compounding 
phenomena that may become important when water levels are high—for example, it is 
expected that runoff will spread out as a wider flow when high water levels allow flow to crest 
high points in the landscape. This may occur at water levels below flooding levels and account 
for the decrease in the response of water level to increased flow at all three sites. This occurs 
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for flows above 2000, 1000, and 3000 cfs at Novato Mouth, Petaluma, and Rowland Bridge 
sites, respectively, when water levels are high, and may be related to differences in channel 
hypsometry at these sites.  

 

Figure 19. Statistical relationships between each forcing parameter and response in water 
level residual for each field site: Novato Mouth (left column), Petaluma River (middle 
column), Rowland Bridge (right column). Parameters are atmospheric pressure (top row), 
ocean wind (second row), local wind (third row), river flow (fourth row). An additional panel 
is inserted for the extreme response of water level residual to flow at the Rowland Bridge site 
(over 3 m). 

Further insight into extreme water level residuals is obtained from inspection of individual 
events, such as those that occurred during the storms in early 2019 (Figure 20). For the largest 
flow event (27 February), the residual at Novato Mouth is not large as the atmospheric pressure 
was not very low—however, the residual is indeed the highest at Rowland Bridge where fluvial 
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effects dominate. At Novato Mouth the highest residuals were observed during the 17 January 
and 14 February storms associated with strong winds and very low pressure, respectively. 
While our statistical model effectively resolves these peaks in water level residual, only time 
will allow an assessment of the robustness of this statistical model for a larger number of 
diverse storm events. 

 

Figure 20. Fluctuations in water level residuals at Novato Mouth and Rowland Bridge during 
the passage of strong storms through the project area in February and March 2019. Notable 
storms and high-water-level events occurred on 17 January as well as 2, 14 and 27 February. 

3.4 Effects of Sea Level Rise 

The focus of this project is on the short-term forecast of water level, motivated by the need for 
operational information prior to flooding events. These long-term records of observed water 
level at specific sites also allow quantification of the probability of a threshold being exceeded 
under contemporary conditions. While the probability of high water levels may change as wind, 
atmospheric pressure and rain changes with climate change, that is difficult to project because 
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local-scale predictions of wind, pressure and rain are poor. In contrast, the effect of sea-level 
rise can be assessed more readily because there are reliable long-term forecasts of the rising 
trend in sea level (NRC 2012; Griggs et al 2017). The primary effect of sea-level rise is to elevate 
the base level for all other processes, including tides and non-tidal forcing of residuals. 

With sea-level rise, the distribution of water levels observed at each site can be expected to 
shift to higher values by the same amount. While several other sea-level-rise effects may alter 
this projection (e.g., inducing changes in morphology following Thorne et al 2018, or changes in 
tidal propagation following Holleman and Stacey 2014), it is expected that the simple elevation 
of the water-level distribution will be the dominant effect of sea-level rise. Thus, as sea level 
rises, we expect a greater number of flood events that occur when water levels at exceed 
critical thresholds, e.g., higher probability that water levels in Novato Creek or Petaluma River 
will overtop levees, resulting in flooding of Highway-37 and surrounding lands. 

 

Figure 21. Distribution of hourly observed water level values at the three project sites: 
Novato Mouth (blue), Petaluma River (orange), and Rowland Bridge (green). The dashed 
vertical line at 2.4 m demarcates the historical highest astronomical tide for these sites. 

The distribution of water levels observed at each site (Figure 21) illustrates differences between 
sites, e.g., Novato Mouth has a peak at 0.5 m, corresponding to the low-tide asymptote effect, 
whereas Petaluma River shows the broadest distribution of values (larger tidal range). At all 
stations, water levels rarely exceed the highest astronomical tide (HAT ~2.4 m NAVD88), which 
is the highest water level ever expected if residuals were always zero. However, water levels do 
exceed this occasionally at the Petaluma River site and more often at the Rowland Bridge site 
where water levels may exceed HAT by a meter or more due to backing up of creek flow. 
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While this HAT threshold was not exceeded in the five years of data from Novato Mouth, it was 
exceeded a few times at the Petaluma River site and several times at the Rowland Bridge site 
(Figure 22). If nothing else changes (i.e., the statistical distributions of water level remain the 
same), then as sea level rises this threshold will be exceeded more often. It is most marked at 
Petaluma River where this threshold will be exceeded 12 days each year with 0.25 m sea-level 
rise (expected within next 20-30 years, Figure 23 and Griggs et al 2017).  

 

Figure 22. The probability of water level being higher than the present-day HAT threshold 
increases with a rise in sea level. Probabilities are calculated from observed distributions of 
water level values at each site (Figure 20).  

However, there is little change in the probability of exceedances at Novato Mouth or Rowland 
Bridge until sea level rises more. With 0.5 m sea-level rise (expected before the year 2100, 
Figure 23 and Griggs et al 2017), the present-day HAT threshold will be exceeded 45 days each 
year at the Petaluma River site and 10-20 days a year at Novato Mouth or Rowland Bridge sites. 
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Figure 23. Observations of past and projections of future relative sea level rise for San 
Francisco, California from Griggs et al (2017).  
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4 Summary 

Predicting coastal flooding days in advance is critical to protecting human life, economic 
productivity, and low-lying infrastructure—such as Highway-37 that runs across the wetlands 
along the northern shore of San Francisco Bay. We have developed an empirical model for 
short-term forecasts of water level at specific sites adjacent to low points in the highway, based 
on 2-3 years of water level observations at these sites. This demonstrates the feasibility of 
implementing a site-specific, hyper-local flood prediction and warning system if there are also 
precise, high-resolution data on low points in the landscape, i.e., water-level thresholds. The 
same approach can be implemented at multiple sites across the Bay, scaling up to a regional 
system. While water-level records exist at some sites, it will be necessary to deploy sensors at 
other priority sites that telemeter data in real-time, which can be done affordably as done here 
for the Petaluma River site. In addition to delivering operational forecasts of water level 
extremes, this network would provide real-time data on water levels as they occur at these 
high-priority sites. This approach provides lead time to transportation and emergency 
management agencies in planning for protection of people, property, and livelihood.  

This data-based forecast system is built on a continuously updated model fed by a stream of 
new water level data from the field site. In terms of near-term, site-specific forecasts, the 
accuracy and confidence of these water level predictions outperform any other method (e.g., 
bay-wide simulation models, e.g., Barnard et al 2014) and model performance will continue to 
improve as additional years of data are collected. The incremental site-specific cost of this 
approach is about $2,000 for installation of a water-level sensor, about 5 days for initial model 
training and to develop site-specific forecasts and, following that, about 5 days per annum for 
visiting the site and monitoring/updating model output for the site. Even including many sites 
and core operations, the cost of such a system is dwarfed by the future cost of flood damages 
that can be pre-empted or mitigated (Hanak et al 2011; PPIC 2017 brief). Further, this model is 
built on open-source and publicly available software, facilitating implementation not only 
across San Francisco Bay but also in other bays. 

In this project we developed the model and a 4-day forecast tool for two sites on Novato Creek 
and one on Petaluma River—sites that are critical for anticipating flooding of State Highway 37 
and low-lying lands in the vicinity of Novato, California. The approach works well for sites 
dominated by bay hydrodynamic processes (i.e., Petaluma River and Novato Mouth), where 
errors are typically less than 10 cm (~4 inches). The approach does not work as well for sites at 
the head of the tide, where fluvial hydrodynamics dominate during high-flow events that are 
poorly predicted (i.e., Rowland Bridge). At all sites, the forecast error will be reduced as 
meteorological and hydrological forecasts improve and error is reduced in predictions for 
winds, atmospheric pressure, and rain as well as creek flow and stage. 

This report serves as a reference document for the web-based prediction tool and for 
developing a dialog with stakeholders and first responders in the region. It is expected that 
feedback from this will allow tailoring of model predictions and development of longer-term 
prognoses for this region. While short-term forecasts are more deterministic, decadal 
projections are necessarily probabilistic and rely on projections of changes in non-tidal forcing 

https://www.ppic.org/wp-content/uploads/JTF_FloodsJTF.pdf
https://coastalocean.ucdavis.edu/ocean-observing/hwy37
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under climate change. Over the 2 to 3-year period for which water level data are available at 
the three project sites, each of the non-tidal factors accounts for residuals with a range of 
about ¾ m (Figure 17), which is about 10% of spring tide range. With more extreme winds, 
pressure or runoff, these non-tidal residuals may be larger. Further, over time there is a 
growing prospect that these factors will align perfectly at a specific site, yielding an 
unprecedented non-tidal residual. Given that the highest water levels observed over the 2 to 3-
year project were within ½ m of 100-year FEMA levels at Petaluma and Novato Mouth sites and 
within ¼ m of USGS-estimated flood stage at Rowland Bridge, there is significant likelihood of a 
flood occurring under present-day sea levels and increasing likelihood of a flood as the mean 
sea level rises (Figure 21).  
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5 Future Directions and Needs 

Our successful demonstration of near-term, site-specific forecasts of water level has been 
implemented at three sites and it is immediately useful there. Looking forward, there are 
several pathways, each yielding additional value:  

● Apply to diverse sites, to test or confirm the broad applicability of the approach. 

● Implement at multiple sites, developing a network. 

● Work with stakeholders and users of forecasts to fine tune available information. 

● Combine water level forecasts with high-precision elevation data for flood warnings. 

● Explore synergy between this site-specific model and bay-scale simulation models. 

● Leverage site-specific insight to improve climate-change projections.  

In this project, high-quality forecasts have been demonstrated for Petaluma River and outer 
Novato Creek. By implementing at other sites, the general applicability of this model can be 
tested. It is expected that it will perform well in sheltered waters (i.e., not exposed to high wave 
energy) and at sites that are not dominated by fluvial during high-flow events. The skill of this 
approach also rests on the availability of high-confidence, high-precision predictions for wind, 
pressure and runoff proximal to each site. These input predictions can be expected to improve 
over future years if ongoing data collection is prioritized as an essential part of the prediction 
model and warning system. 

The primary value of this method is to obtain water level predictions at high-priority sites, i.e., 
low-lying infrastructure vulnerable to flooding. However, a network of sites may offer 
additional benefits, including the ability to track flood risk at multiple vulnerable sites at the 
same time. This is specifically valuable for transportation networks where flood risk at one 
location interacts with flood risk at another location. In the event of road closures, it will be 
invaluable to have real-time water level data as well as near-term forecasts of imminent 
flooding and closure of an alternate route. This would help local/state managers and officials to 
respond in a timely manner to flood impacts—and it would provide advance warning of sudden 
catastrophic flooding that could overwhelm local resources, requiring evacuation. 

Going forward, the value of this model will be enhanced by dialog with stakeholders and 
specifically with people who will directly use model output. There are many ways model output 
can be delivered, in real-time or aggregate form as well as through retrospective assessment. 
Through dialog with stakeholders high-value indices can be identified and evaluated. And 
additional sites can be implemented affordably at new critical locations. However, as 
stakeholder interest can wax and wane with hydrological cycles, this dialog may not get 
immediate stakeholder interest and it would benefit from ongoing attention from local and 
regional government. 

Building on the above, a critical challenge is to leverage this site-specific water level forecast 
into a flooding forecast and early warning system. Forecast of flooding requires high-precision 
data on the elevation of low points in the landscape, both infrastructure that can be flooded 
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and flooding routes past levees and embankments. For example, while a low point in the levee 
near the Petaluma River site is within a foot of the water level maximum observed since 2020, 
the precise elevation is not well known and there are few data on other low points and flood 
routes through which water would flow from the bay to flood low-lying land and infrastructure. 
A precise digital elevation model is needed to predict how water will flow from the bay into 
these low-lying areas. 

This site-specific, statistical approach yields information that is different to that provided by 
bay-wide simulation models like CoSMoS (Barnard et al 2014). These two approaches are 
complementary both in the information provided as well as in the cross-model comparisons 
that will lead to improvements in each approach. By combining approaches, improved short-
term forecasts and long-term projections can be provided. 

While the strength of this statistical model is in providing water level forecasts at specific sites 
and during specific events, it also has promise in improving projections of water level at longer 
time scales relevant to climate change and sea-level rise. The data analysis underlying this 
model provides insight to the hydrodynamic processes that account for water level extremes at 
specific sites. Not only can these data and understanding of processes be used to improved 
climate-change projections from bay-wide simulation models, but it can be used to analyze the 
potential interaction of processes that will likely become more non-linear as sea level rises (e.g., 
Holleman and Stacey 2015). The probability of extreme water levels depends most strongly on 
mean sea level (e.g., Figure 22), but it also depends on the probability of extreme winds, 
pressure, and runoff. A key question in the probability of non-tidal extremes is the likelihood 
that extreme wind, pressure, and runoff effects occur at the same time. Given the association 
of each with winter storms, these statistical distributions are not independent, and the 
probability of concurrent extremes is higher than one would expect from independence. 
Meteorological analyses can shed light on the likelihood of concurrence and how this may 
change with climate change (as well as across diverse sites in one bay).   
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Data Summary 

Products of Research  

The primary dataset consists of the three water-level sites (both observations and predictions) 
and time series of the four parameters that are used to train the model. This includes hourly 
observed meteorological data such as wind, atmospheric pressure, and flow for the period of 
2019-01-01 to 2022-09-27. The dataset consists of four fields: Ocean Wind, Local Wind, 
Atmospheric Pressure and River flow. The raw data were collected from publicly available 
sources as outlined on the DRYAD site (https://doi.org/10.25338/B8WS8H). The data was 
downloaded and resampled to hourly time intervals. Small data gaps were filled by linear 
interpolation. The wind data were transformed from a polar coordinate system of wind speed 
and direction to principal component x-y vectors. The principal components were oriented so 
that the alongshore (y-component) is oriented at 60 degrees North for the wind at Gnoss Field 
and 100 degrees north for the wind at the NDBC buoy. The listed onshore wind is the shore-
normal component for each location. 

Data Format and Content  

Data format and type are described in detail on DRYAD site https://doi.org/10.25338/B8WS8H 

Data Access and Sharing  

Operational data are shown in real-time on the water level forecast website 
https://coastalocean.ucdavis.edu/ocean-observing/hwy37 and the primary access to data files 
is via the DRYAD site. 

Reuse and Redistribution  

Data are available for download, but we request that users of these data keep us informed of 
their use and we caution against widespread use of the forecast data until we have had the 
chance to submit a manuscript outlining the model to a peer-reviewed journal. 

General public can access water level observations and predictions at the public website 
https://coastalocean.ucdavis.edu/ocean-observing/hwy37 

https://doi.org/10.25338/B8WS8H
https://doi.org/10.25338/B8WS8H
https://coastalocean.ucdavis.edu/ocean-observing/hwy37
https://coastalocean.ucdavis.edu/ocean-observing/hwy37
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